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ABSTRACT: The objective of this study was to apply the envirotyping methodology to 
delineate macroenvironments (MEs) in the Brazilian Northeast. Multivariate analyses were 
conducted to investigate the relationship between genotype × environment interaction 
(G × E), stability, and the average performance of maize genotypes, to enhance corn 
adaptation to diverse environmental conditions. Twenty corn hybrids were cultivated 
across ten environments over two harvest seasons, with the following characteristics 
assessed in each environment: grain yield (GY), plant height (PH), ear height (EH), 
plant density (PD), and number of ears (NE). The target regions were characterized 
based on 19 environmental covariates (ECs) and a 23-year climatological series (2001-
2023), which resulted in the identification of four MEs with similar climatic features. The 
interaction between genotype × macroenvironment × year significantly influenced the 
evaluated traits. The top five genotypes for each ME were identified using the multi-
trait mean performance and stability index (MTMPS) which demonstrated favorable 
average performance and stability across multiple years seasons. The hybrids G03 and 
G04 were selected in three out of four MEs, indicating their stability and adaptability as 
hybrids. Envirotyping revealed a robust correlation between environments, enhancing the 
precision with which cultivars can be recommended for various locations within the same 
ME. The multivariate approach utilizing MTMPS proved effectively identified productive 
and stable genotypes tailored to each ME.
Keywords: agricultural zoning, climate adaptation, ecophysiology, resource optimization, 
sustainable agriculture
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Introduction

Brazil is among the three leading global producers 
of corn (Zea mays L.), ranking behind only the 
United States of America and China (USDA, 2024). 
During the 2022/2023 crop season, Brazil cultivated 
approximately 22,269.2 million hectares, yielding 
131,892.6 million tons of corn, with an average 
yield of 5.9 t ha–1 (CONAB, 2024). However, the 
northeastern region exhibited below-average 
productivity, recording 3.5 t ha–1, underscoring the 
urgent need to develop cultivars adapted to the 
diverse environments of the Brazilian Northeast. 
This is becoming increasingly critical in the context 
of climate challenges characterized by greater rainfall 
variability and extreme weather events. 

Notwithstanding the region’s overall below-
average productivity, a number of northeastern states 
have exhibited commendable performance. The states 
of Sergipe, Maranhão, Bahia, and Piauí demonstrated 
the highest corn productivity during the 2022/2023 
crop season. The state of Sergipe recorded the highest 
productivity at 5.2 t ha–1, followed by Maranhão with 
5.1 t ha–1, Bahia with 4.7 t ha–1, and Piauí with 4.5 t 
ha–1 (CONAB, 2024). These results underscore the 
resilience of these states in overcoming climatic and 

agronomic challenges, emphasizing the importance of 
tailored management strategies and technologies for 
each regional context. 

Furthermore, it is crucial to highlight the 
pivotal role of phenotypic and biometric analysis 
in the identification and selection of corn cultivars 
that are well-suited to a range of environmental 
conditions. A comprehensive genotype evaluation in 
multi-environment trials is imperative to gain insight 
into elucidating genotype × environment interaction 
(G × E) and ascertaining adapted and productive 
materials with high value for cultivation and use under 
heterogeneous environmental conditions. 

The integration of environmental covariates 
(ECs) into genomic and phenomic prediction models 
via “envirotyping” enhances our understanding of G 
× E and its implications for crop productivity (Costa-
Neto et al., 2021a, b; Millet et al., 2019). By deepening 
our understanding of G × E in maize cultivation in 
the northeastern region of Brazil, we seek to facilitate 
the development of more efficient and sustainable 
agricultural practices. This encompasses the 
optimization of maize hybrid selection, the reduction 
of the necessity for extensive field trials, and the 
optimization of resource and time utilization in corn 
breeding efforts.
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Materials and Methods 

Study site
 
The present study was conducted in ten environments 
distributed across three states in the northeastern region 
of Brazil (Figure 1) over two consecutive harvest seasons: 
2011/2012 and 2012/2013.

Genotypes used 

Twenty corn genotypes from public and private companies 
were utilized in this study. Comprehensive information 
regarding each genotype, including cultivar, grain texture, 
grain color, cycle, and the seed company holding the 
registration, is provided in Table 1. The objective was to 
encompass various genetic backgrounds and performance 
characteristics to ensure a comprehensive evaluation 
across different environments.

Experimental design 

The experiments were conducted using a randomized 
complete block design with two replications. Each plot 
consisted of four rows measuring 5.0 m in length, with 
a spacing of 0.70 m between rows and 0.20 m within 
rows. The seeds were planted manually, and thinning 
was performed 15 days after emergence, resulting in 
100 plants per plot. The fertilization was conducted in 
accordance with the recommendations based on the 
soil analysis results from each experimental area. The 
irrigation was not utilized, and pest and weed control 
measures were implemented according to the specific 
crop requirements in each region.

Morphological variables 

This study examined five agronomic traits that are 
related to productivity. The records included plant 
density (PD, unit), number of ears (NE, unit), and grain 
yield (GY, t ha–1), which were manually harvested and 
measured from the two central rows of the plot. Plant 
height (PH, cm) was measured from the base of the root 
to the insertion of the flag leaf, while ear height (EH, cm) 
was measured from the base of the root to the peduncle 
of the main ear.

Statistical analysis 

The methodology employed in the statistical analyses 
follows the recommendations established by Yue 
et al. (2022), who pioneered the use of EnvRtype for 
environmental segmentation and the the multi-trait mean 
performance and stability index (MTMPS) approach for 
selecting corn hybrids in mega-environments in China. 
Each stage is delineated in the following sections.

Macroenvironment (ME) 

The macroenvironment (ME) was delineated using the 
R software (R Core Team, 2023). The get weather() 
function from the EnvRtype package (Costa-Neto et al., 
2021b) was employed to obtain 23 years (2001-2023) 
of daily meteorological data for 19 ECs (Table 2), with 
consideration given to the planting and harvesting 
dates for each environment. The EnvRtype package 
retrieves raw environmental data from platforms, such 
as NASA’s Prediction of Worldwide Energy Resources 
(NASA-POWER) (Sparks, 2018). The reliability of NASA-

Figure 1 – Geographic information of the ten experimental sites for the trials carried out during 2012 and 2013. The four macroenvironments 
(MEs) are delineated based on long-term (23 years) climate information.
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POWER for agricultural use was confirmed by Monteiro 
et al. (2018), and Yue et al. (2022) validated its use in 
this context. The 19 ECs observed in each locality were 
utilized to construct the environmental covariate matrix 
W, which was then employed to compute environmental 
kinships. This process was carried out using the W_
matrix() function of the EnvRtype R package (Costa-
Neto et al., 2021b), in accordance with the methodology 
proposed by Costa-Neto et al. (2021a).

Six months was deemed an appropriate timescale 
to capture the temporal variation of environmental 
information more accurately throughout a year. 
Consequently, each of the 2,622 variables (23 years × 19 
variables × 6 periods) was employed as an environmental 
descriptor to construct environmental relationships. 
Subsequently, to ensure data quality, ECs that exceeded 
± 3 standard deviations were eliminated (Costa-Neto 
et al., 2021a). Then, utilizing the W_matrix (10 rows 
× 2,622 columns), an enviromic kernel (equivalent to 
a genomic relationship) was computed using the env_
kernel() function of the EnvRtype R package (Costa-Neto 
et al., 2021b). 

To visualize the relationships between ECs and 
their linkage to the study location, we conducted a 
principal component analysis (PCA). For this purpose, 
we constructed a two-way table comprising the average 
values of ECs (columns) associated with each location 
(rows). A biplot was generated using the fviz_pca_biplot() 
function from the factoextra R package (Kassambara and 
Mundt, 2020).

Table 1 – List of genotypes used, along with the codes used in segmentation, and their respective origins, types, cycles, colors, grain 
textures, and supplying companies.

Code Cultivar Transgenic/
 conventional Type1 Cycle2 Grain color3 Grain texture4 Seed company

G01 20A55HX Transgenic TH E OR SMHARD Morgan
G02 2B433HX Transgenic TH EE Y/OR SMDENT Dow Agro
G03 2B587HX Transgenic SH E Y/OR SMDENT Dow Agro
G04 2B604HX Transgenic SHm E OR SMHARD Dow Agro
G05 2B707HX Transgenic SH E OR SMHARD Dow Agro
G06 2B710HX Transgenic SH E Y/OR SMHARD Dow Agro
G07 30A16HX Transgenic SH E Y/OR SMHARD Morgan
G08 30A37HX Transgenic SH EE Y/OR SMHARD Morgan
G09 30A91HX Transgenic SHm E Y/OR SMHARD Morgan
G10 30A95HX Transgenic TH E OR SMHARD Morgan
G11 BRS2022 Conventional DH E OR SMDENT Embrapa
G12 BRS2020 Conventional DH E OR SMHARD Embrapa
G13 BM820 Conventional SH E R HARD Biomatrix
G14 DKB330YG Conventional SH EE R/OR SMDENT Dekalb
G15 DKB370 Conventional SHm E Y/OR SMHARD Dekalb
G16 Statusvip Transgenic SH E OR HARD Syngenta
G17 30A68HX Transgenic SH EE OR SMHARD Morgan
G18 P4285H Transgenic SH E Y/OR HARD DuPont
G19 30F53HR Transgenic SH E OR SMHARD DuPont
G20 30K73H Transgenic SH E Y/OR SMHARD DuPont
1TH = triple hybrid; SH = single hybrid; SHm = modified single hybrid; DH = double hybrid. 2E = early; EE = extra early. 3OR = orange; Y = yellow; R = reddish. 
4SMHARD = semi-hard; SMDENT = semi-dent; G = genotype.

Table 2 – List of environmental covariates used to segment the 
environments and group them according to their distances 
(greater similarity).

Code Environmental variable Units

Nasa 
POWERa

WS Wind speed at 2 m km h–1

TMAX Maximum temperature at 2 m °C d–1

TMIN Minimum temperature at 2 m °C d–1

TMDEW Temperature of the dew/frost point 
at 2 m °C d–1

TMED Average temperature °C d–1

PRECTOT Rainfall precipitation mm d–1

RTA Extraterrestrial radiation MJ m–2 d–1

RH Relative humidity at 2 m %

ASKLW Downward thermal infrared 
(longwave) radiative flux

ASKSW All sky insolation incident on a 
horizontal surface

Calculatedb

FRUE Effect of temperature on radiation 
use efficiency -

GDD Growing degree day °C d–1

n Solar radiation h
N Daylight hours h
VPD Vapor pressure deficit kPa d–1

SPV Slope of saturation vapor pressure 
curve kPa °C d–1

TRANGE Temperature range °C d–1

ETP Potential evapotranspiration mm d–1

PETP Deficit by precipitation mm d–1

aEstimated from NASA orbital sensors (Sparks, 2018). bProcessed using 
concepts from Allen et al. (1998) and Soltani and Sinclair (2012). Source: 
Compiled by the authors, with data extracted from the EnvRtype package 
(Costa-Neto et al., 2021b). The EnvRtype gathers raw environmental data 
from public platforms, such as a satellite-based meteorological system 
known as “NASA’s Prediction of Worldwide Energy”.
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Environmental typing 

To analyze the experiment’s climatic data, the env_
typing() function from the EnvRtype R package was 
employed to define environmental types based on 
the means of the 19 ECs highlighted in Table 2. This 
was done to gain insight into the temporal variation of 
environmental information during the development of 
tropical maize crops. 

The crop cycles were classified into five principal 
phenological stages (PS) based on days after sowing: 
0-14 (initial growth), 15-35 (first leaf expansion), 36-65 
(second leaf expansion), 66-90 (flowering), and 91-120 
(grain filling). A frequency distribution was calculated 
for each combination of YEAR-ME-PS, with quantiles 
0.01, 0.025, 0.50, 0.75, 0.975, and 0.99, thereby enabling 
a comprehensive analysis of climatic patterns.

Variance component analyses 
The impact of ME and year on genotype behavior was 
assessed using a linear model with random effects (only 
the intercept was fixed) employing the lmer() function 
from the lmer4 R package (Bates et al., 2015), according 
to the Eq. (1):
y G M Y GM GY MY GMY

REP
ijkn i j k ij ik jk ijk

n j k ijkn

= + + + + + + + +

+ +( )

µ

ε  
:

  (1)

where yijkn are the scores of the characteristics of the i-th 
genotype observed in the n-th repetition nested within 
the j-th ME of the k-th year; μ is the grand mean; Gi, 
Mj, and Yk are the main effects of genotype, ME, and 
year, respectively. Interaction effects are represented 
by GMij, GYik, MYjk, GMYijk, REPn(j:k) denotes the effect 
of repetition n (likely the combination of location and 
blocks) nested within the ME and year; and eijkn denotes 
the random error associated with yijkn.

The variance components and genetic parameters 
were estimated through the Restricted Maximum 
Likelihood method, as proposed by Dempster et al. 
(1977). The significance of the random effects was 
evaluated through the likelihood ratio test. The broad-
sense heritability (H2), based on the genotype mean, 
was calculated as the ratio of genotypic variance (σG

2 )to 
the variance of the genotype mean (σP

2 ) (Schmidt et al., 
2019; Yan, 2014) according to the Eq. (2):
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where J, K, and N are the numbers of MEs, years, and 
combinations of location/blocks, respectively. σG

2 , σGY
2 , 

σGM
2 , σGMY

2  are the variances of G, G × YEAR interaction, 
G × ME interaction, and G × YEAR × ME interaction, 
respectively; σ∈

2 is the residual variance.
A H2 close to 1 indicates that variations in 

genotypic effects are predominantly attributed to genetic 
differences. Conversely, an H2 close to zero suggests that 

observed genotypic divergences are more influenced by 
G × E or experimental errors (Yan, 2014). 

Mean performance and stability of individual traits

Genotype selection was conducted independently within 
each delineated ME, with the objective of selecting 
genotypes that exhibited the desired performance 
within the ME while maintaining stability over time. 
The average performance of genotypes i over k years 
(Y ik) was calculated for each ME. Subsequently, Wricke’s 
ecovalence (Wi) was employed as a measure of genotypic 
stability over time and was calculated using the Eq. (3):
        
W Y Y Y Yi ik i k

k

K
= − − +( )=∑ . . ..

1
    (3)

Genotypes with low Wi values demonstrate a 
reduced tendency to deviate from the mean over time, 
suggesting enhanced stability. To integrate the mean 
performance and stability index (MPSi) of the genotypes, 
we adapted the concept of the weighted average of the 
stability and yield based on performance (Olivoto et al., 
2019a; Yue et al., 2022). In this adaptation, the weighted 
mean of absolute scores (WAASB) was replaced with Wi 
as a measure of stability, as calculating WAASB requires 
at least two axes of principal component interaction. 
The MPSi was computed using the Eq. (4):
         
MPS

rY rW
i

i Y i S

Y S
=

×( ) + ×( )
+

θ θ
θ θ

    (4)

where MPSi represents the superiority index for genotype 
i, balancing between average performance and stability; 
θY and θs are the weights for average performance and 
stability, respectively (we chose to use θY = 70 and θS= 
30 to give greater weight to average performance, as 
selecting hybrids that are highly stable but with low 
performance is not desired); rYi and rWi are the rescaled 
values for average performance Yi and Wi, where Wi 
represents the stability, respectively, of genotype i. The 
rescaled values were calculated as follows, Eq. (5):

rY rW nma nmi
oma omi

o oma nmai i i= = −
−

× −( ) +   (5)

where nma and nmi are the new maximum and 
minimum values after rescaling; oma and omi are the 
original maximum and minimum values, and i is the 
original value of the response variable (or ecovalence 
value) of genotype i. For variables where lower values 
are desired (EH and PH), nma = 0 and nmi = 100 were 
used. Thus, the genotype with the lowest mean and 
lowest Wi would have rYi = 100 and rWi = 100 after 
rescaling. Higher values were desired for the other three 
variables (PD, NE, and GY). Therefore, we used nma 
= 100 and nmi = 0. After rescaling all features, a two-
way table rMqp with q rows (genotypes) and p columns 
was created. In rMqp, the column ranges from 0 to 100, 
considering the desired direction of selection (decrease 
or increase), while maintaining the correlation structure 
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represents the j-th scores of the ideotype. Genotypes 
with lower MTMPS values were closer to the ideotypes 
and thus exhibited higher mean performance and better 
stability in the evaluated traits.

Selection differentials (SD)

For each delineated ME, the top five genotypes were 
chosen, considering a selection intensity of 25 %. The 
selection differential (SD) as a percentage of the population 
mean (DS %) was then calculated by the Eq. (9):

DS% = (XS –XO) / XO × 100  (9)

where Xs represents the mean phenotypic value of the 
selected genotypes, and Xo represents the population 
mean.

Results 

Environmental similarity

A climatological series spanning the past 23 years, 
encompassing 19 ECs, delineated four MEs (Figure 2) 
based on the observed similarity on an “omic” scale. 
ME1 included the municipalities of Teresina - Piauí state, 
Brejo - Maranhão state, and Uruçuí - Piauí state. In ME2, 
the cities of Balsas - Maranhão state, São Raimundo das 
Mangabeiras - Maranhão state, Colinas - Maranhão state, 
and Nova Santa Rosa - Piauí state were identified. ME3 
was formed solely by the municipality of Umbaúba - 

of the original variable set (Olivoto and Nardino, 
2021). To calculate these indices, we used the multi-
performance score (mps) and weighted stability and 
multi-performance (wsmp), mps() and wsmp() functions 
from the R package metan (Olivoto and Lúcio, 2020).

Mean performance and productive stability

The mean performance and stability were calculated 
using the mgidi() function from the R package metan, 
which was employed to calculate the MTMPS. The 
MTMPS is based on the concept of the multi-trait 
stability index (MTSI) (Olivoto et al., 2019b). The 
difference between MTMPS and MTSI lies in the 
methodology employed in this study, wherein MTMPS 
incorporates Wi instead of the WAASB index. Initially, 
an exploratory factor analysis was conducted on rMqp 
to cluster correlated variables into factors and compute 
factor scores for each genotype, in accordance with the 
approach proposed by Olivoto and Nardino (2021):

X = μ + Lf + ∈  (6)

where X is a vector of standardized observations of 
dimension p × 1; μ is a vector of standardized means 
of dimension p × 1; L is a matrix of factor loadings 
of dimension p × f; f is a vector of common factors of 
dimension p × 1; and ∈ is a vector p × 1 of residuals, 
where p is the number of traits and f is the number of 
retained common factors.

The initial loadings were determined by 
considering only factors with eigenvalues exceeding one. 
Subsequently, varimax rotation criteria (Kaiser, 1958) 
were applied to obtain the final loadings, which were 
then utilized to compute the genotypic scores using the 
following procedure:

F Z A RT
T

= ( )−1   (7)

where F is a matrix of factor scores of dimension q × f; Z 
is a standardization matrix (zero mean and unit variance) 
rMqp of dimension q × p; A is a matrix of canonical 
loadings of dimension p × f; and R is a correlation matrix 
of dimension p × p between the MPS values. Here, q, 
p, and f represent the number of genotypes, traits, and 
retained factors, respectively. Considering the rescaled 
values in rMqp, the ideotype would be the genotype with 
the best performance and stability, achieving 100 for 
all analyzed traits. Thus, the ideotype was defined by a 
vector (1 × p) I such that I = [100]. The classification of 
genotypes was determined by calculating the Euclidean 
distance between the scores of each genotype and the 
score of the ideotype, as follows:
        
MTMPS X F Fi ij jj

f
= −( )



=∑ 2

1

0 5.

    (8)

where MTMPSi is the MTMPS of the i-th genotype, Fij 
represents the j-th scores of the i-th genotype, and Fj 

Figure 2 – Illustrates a heatmap displaying delineated 
macroenvironments (MEs), depicting similarity based on a 
23-year dataset across 19 environmental covariates. The 
correlation scale on the x-axis ranges from 0 (red) to 1 (purple), 
indicating that the closer the value is to 1, the more similar the 
environments are, while values closer to 0 represent greater 
dissimilarity. NSD = Nossa Senhora das Dores; FP = Frei Paulo; 
UMB = Umbaúba; NSR = Nova Santa Rosa; COL = Colinas; 
SRM = São Raimundo das Mangabeiras; BAL = Balsas; URU = 
Uruçuí; BRE = Brejo; TER = Teresina.
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Environmental analysis of the two years of study 

A review of the trends of ECs across individual 
experimental years (Figure 4B and C) reveals distinct 
correlation patterns, indicating the influence of 
seasonality. For instance, in 2012, GY exhibited a 
negative correlation with relative humidity (RH) and a 
positive correlation with vapor pressure deficit (VPD). 
In contrast, in 2013, the correlations were reversed, 
with GY positively correlated with RH and negatively 
correlated with VPD. 

In 2012, when environmental conditions were 
conducive to maize cultivation, there was a strong 
positive correlation between genetic variation (var) and 
GY. This year recorded the highest GY values across all 
MEs, particularly in ME4 and ME3, with average yields 
of 10.6 and 10.5 t ha–1, respectively. Genotype G18 
exhibited remarkable productivity, yielding 13.7 t ha–1 in 
ME4 and averaging 11.1 t ha–1 across all MEs (Figure 5).

Conversely, the least productive year, 2013, 
registered ME3 with the highest yield at 10.2 t ha–1, with 
ME4 following at 8.3 t ha–1. Genotype G19 exhibited 
the highest productivity, yielding 11.4 t ha–1 in ME3. 
Interestingly, G18, in ME4, recorded a yield of 8.6 t ha–1, 
ranking among the ten least productive genotypes for 
this ME (Figure 5). These observations suggest that the 
(G × E) × YEAR interaction may influence phenotypic 
variation.

Another noteworthy observation pertains to the 
correlation between VPD × PRECTOT and VPD × 
deficit by precipitation (PETP), which exhibited negative 
correlations in 2012 and positive correlations in 2013. 
This suggests that higher VPD correlates with a drier 
year in 2012 and a wetter year in 2013, or vice versa, 
indicating that lower VPD correlates with a wetter 
2012 and a drier 2013. Such variations in VPD could 
result in water stress, either due to shortage or excess, 
which would impact maize growth and development 
in different ways depending on the phenological stage 
(Figures 6A-B and 7A-B) at which this stress occurs. This 
would, in turn, elucidate the variation in GY between 
different years.

Figure 3 – Contribution of environmental covariates (x-axis) 
in the principal component analysis (averaged over a period 
of 23 years). Dim = dimension; GDD = growing degree day; 
FRUE = effect of temperature on radiation use efficiency; 
SPV = slope of saturation vapor pressure curve; ASKLW = 
thermal downward longwave radiative flux; PRECTOT = rainfall 
precipitation; TMDEW = temperature of the dew/frost point; RTA 
= extraterrestrial radiation; TMIN = minimum temperature; PETP 
= deficit by precipitation; N = daylight hours; TMAX = maximum 
temperature; WS = wind speed at 2 m; ETP = potential 
evapotranspiration; n = solar radiation; TRANGE = temperature 
range; ASKSW = all sky insolation incident on a horizontal 
surface; RH = relative humidity; VPD = vapor pressure deficit.

Table 3 – List of municipalities in the Brazilian Northeast and corn productivity (2022/2023), according to CONAB (2024), as well as the 
geographic coordinates in decimal degrees of the ten environments, used for the segmentation of macroenvironments.

Environmet Code State Longitude Latitude Altitude Corn Yield 
m t ha–1

Balsas BAL Maranhão 46°01’45” W 07°31’47” S 244 5,161
Brejo BRE Maranhão 42°45’00” W 03°40’48” S 68 5,161
Colinas COL Maranhão 44°04’12” W 06°01’12” S 302 5,161
Nossa Senhora das Dores NSD Sergipe 37°12’45” W 10°29’30” S 180 5,209
Frei Paulo FP Sergipe 37°31’42” W 10°33’36” S 435 5,209
Nova Santa Rosa NSR Piauí 44°33’30.08” W 08°17’02.8” S 489 4,523
São Raimundo das Mangabeiras SRM Maranhão 45°25’10” W 06°49’48” S 327 4,879
Teresina TER Piauí 42°46’48” W 05°01’48” S 68 4,523
Umbaúba UMB Sergipe 37°40’26” W 11°22’34” S 130 5,209
Uruçuí URU Piauí 44°28’10” W 07°13’59” S 50 4,523

Sergipe state, while ME4 consisted of the municipalities 
of Frei Paulo - Sergipe state and Nossa Senhora das Dores 
- Sergipe state (Figures 1 and 2, Table 3).

Moreover, environmental scores of the PCA Biplot 
(Figure 4A) were found to be most influenced by the 
following ECs: growing degree day (GDD), effect of 
temperature on radiation use efficiency (FRUE), slope 
of saturation vapor pressure curve (SPV), thermal 
downward longwave radiative flux (ASKLW), and 
rainfall precipitation (PRECTOT). These variables were 
identified as the most influential factors in Figure 3.
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values between –11.9 and –9.38 mm d–1. A similar trend 
was observed in ME2, with frequencies declining to 
approximately 45 and 20 % during the respective phases. 
Conversely, ME3 and ME4, which exhibited the highest 
productivity, displayed PETP values that consistently 
exceeded the range of –11.9 to –9.38 mm d–1 during the 
initial growth phase. During the leaf expansion I phase, 
both ME3 and ME4 exhibited PETP values above –9.38 
mm d–1, with approximately 25 % of the time falling 
between –2.75 and 15 mm d–1. This, in conjunction 
with the average temperature (TMED) (Figure 7B), may 
elucidate the higher productivities observed in these 
MEs.

In the 2012/2013 season, these differences in PETP 
were attenuated. ME3, which achieved the highest GY in 
2013, exhibited the PETP values during both the initial 
growth and leaf expansion phases, with approximately 
30 % of the time between –2.75 and 15 mm d–1.

With regarding to VPD (Figure 6B), ME1, 
characterized by the lowest mean GY in both 2012 and 
2013, exhibited the highest VPD levels across diverse 
growth stages. This, in conjunction with elevated TMED 
(Figure 7B), resulted in a more stressful environment 
and, consequently, lower productivity.

Figure 4 – Depicts the biplot for the principal component analysis among environmental variables. A) illustrates long-term pattern data, 
representing the average of 23 years of climatic information; B) and C) display climatic variables observed during the experiments in 
2012 and 2013, respectively; D) presents the average information from the two years of experiments. The variables analyzed include GY 
= grain yield; var = genotypic variance within the macroenvironment (ME); WS = wind speed; TMAX = maximum temperature; TMIN = 
minimum temperature; TMDEW = temperature of the dew/frost point; TMED = average temperature; PRECTOT = rainfall precipitation; 
RTA = extraterrestrial radiation; RH = relative humidity; ASKLW = thermal downward longwave radiative flux; ASKSW = all sky insolation 
incident on a horizontal surface; FRUE = effect of temperature on radiation use efficiency; GDD = growing degree day; n = solar radiation; 
N = daylight hours; VPD = vapor pressure deficit; SPV = slope of saturation vapor pressure curve; TRANGE = temperature range; ETP = 
potential evapotranspiration; PETP = deficit by precipitation. Dim = dimension.

Figure 5 – Heatmap illustrating the mean grain yield of the examined 
genotypes across each combination of macroenvironment (ME) 
and year.

With regard to PETP, during the initial growth 
and leaf expansion I phases of the 2011/2012 season, 
ME1 and ME2 exhibited the lowest value, indicating 
a reduction in water availability (Figure 6A). In ME1, 
the PETP ranged from 80 to 50 % during the initial 
growth and leaf expansion I phase, respectively, with 
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The highest VPD levels were recorded for ME4 
during the flowering and grain filling stages in 2012, 
reaching approximately 70 and 50 % between 0.903 and 
1.25 kPa d–1 (during flowering) and between 1.25 and 2.18 
kPa d–1 (during grain filling), respectively. However, ME4 
exhibited the highest productivity in 2012, indicating that 
VPD did not significantly impact transpiration rate.

Variance components 

The G × ME × YEAR interaction was significant for 
four out of the five analyzed traits, with NE and PD 
displaying the largest contributions to phenotypic 

variance (Figure 8A and Table 4). This underscores the 
direct impact of environmental factors on genotypic 
responses, emphasizing the necessity for genotype 
selection tailored to each ME (Heinemann et al., 2019; 
Mebratu et al., 2019; Singamsetti et al., 2021; Yue et al., 
2022). Considering GY, year and ME were identified as 
the primary contributors to phenotypic variance. As for 
genetic variance, the interactions G × ME, G × ME × 
YEAR, and G × YEAR collectively accounted for over 
50 % of the variance in genotype means for GY, NE, and 
PD (Figure 8B).

The phenotypic correlations between the traits 
studied in each ME over the two years exhibited 

Figure 7 – A) Frequency of each environmental type for rainfall and B) mean temperature observed in the studied environments and 
macroenvironments (MEs) at different stages of the crop development and trial years.

Figure 6 – A) Relative frequency for each type of environment regarding precipitation deficit and B) vapor pressure deficit observed across 
the studied environments and macroenvironments (MEs) at various stages of the crop development and trial years.
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Figure 8 – A) Percentage of phenotypic mean value variance and 
B) percentage of genotype mean variance. EH = ear height, GY 
= grain yield; NE = number of ears; PD = plant density; PH = 
plant height; ME = macroenvironment; G = genotype; REP = 
repetition. 

genotypes for each ME (Figures 10A-D and 11). The 
hybrids G04 and G03 were selected in three MEs 
(ME1, ME3, and ME4), which serves to illustrate their 
commendable performance and stability across diverse 
environments. In addition, certain hybrids were selected 
for two specific MEs: G17 (ME1 and ME2), G10 (ME1 and 
ME3), G08 (ME2 and ME3), and G06 (ME2 and ME4).

The five selected genotypes (ranked by MTMPS) 
within ME1 were identified as G14, G04, G10, G03, and 
G17 (Figure 10A). For ME2, the selected hybrids were 
G06, G08, G01, G07, and G17 (Figure 10B). In ME3, 
the selected hybrids were G08, G03, G02, G04, and G10 
(Figure 10C). Within ME4, the top-performing hybrids 
were G06, G03, G04, G05, and G20 (Figure 10D). 

Three factors remained consistent in all MEs, 
collectively explaining 83, 82, 93, and 97 % of the total 
variance for ME1, ME2, ME3, and ME4, respectively. 
The multivariate selection demonstrated a 100 % 
success rate (five out of five traits) for the desired SD in 
ME1, ME3, and ME4, and 80 % (four out of five traits) 
for ME2 (Figure 12). 

The SD for PD was positive for all MEs, except 
ME2, where it was at –0.13. The GY exhibited a positive 
SD across all MEs, ranging from 3 % in ME2 to 15 % 
in ME4 (Figure 12). Upon analysis of stability over the 
two years of cultivation, the majority of the studied 
characteristics exhibited negative SD values (Figure 
13), with the exceptions of EH in ME1 and ME2, which 
demonstrated SD values of 9.4 and 30.5, respectively, and 
PH in ME1, which exhibited an SD value of 9.6. GY, NE, 

Table 4 – Variance components for the main effect of genotypes 
variance (σG

2 ), macroenvironments variance (σM
2 ), cultivation 

year variance (σY
2 ), and their interactions estimated for five traits 

assessed in 20 maize hybrids.
Source of 
variation EH GY NE PD PH

σM
2 0.804ns 0.146ns 0.017* 0.008** 0.109ns

σG
2 0.000** 0.072ns 0.652ns 0.707ns 0.157ns

σGY
2 1.000ns 0.000** 0.008** 0.154ns 0.422ns

σGM
2 0.360ns 0.001** 0.022* 0.369ns 1.000ns

σGMY
2 0.055ns 0.006** 0.000** 0.000** 1.000ns

σREP MY:( )
2 0.000** 0.000** 0.000** 0.000** 0.000**

σMY
2 0.158ns 0.839ns 1.000ns 1.000ns 1.000ns

σY
2 1.000ns 0.061ns 0.376ns 1.000ns 0.999ns

EH = ear height; GY = grain yield; NE = number of ears; PD = plant density; 
PH = plant height; REP = repetition. *p ≤ 0.05; **p ≤ 0.01; nsp > 0.05.

Figure 9 – Phenotypic correlations between the traits evaluated 
in macroenvironments (MEs) A) ME1, B) ME2, C) ME3, and D) 
ME4 in the two years studied. PH = plant height; NE = number 
of ears; EH = ear height; PD = plant density; GY = grain yield.

notable differences. The ME1 was the only to exhibit 
negative correlations between EH and PD, EH and GY, 
and PD and PH (Figure 9A). In the other MEs, all the 
characteristics were positively correlated with each 
other, although the degree of Mantel correlation between 
the matrices was low. This lends support to the use of a 
multiple characteristics index in each ME to account for 
the different correlation structures (Figure 9B-D).

Selection differentials for mean performance and 
stability 

The selection process for each ME entailed considering 
multiple traits, resulting in identifying the top five 
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and PD exhibited negative SD across the MEs. Notably, 
ME1 and ME2 demonstrated the lowest SD values for GY, 
at –32.9 and –45.7, respectively. This confirms that the 
selected hybrids exhibit superior average performance 
and remain stable across diverse environments and 
contrasting cultivation years.

Classification of MEs

The Genotype and Genotype × Environment Biplot 
(GGE biplot) (Figure 14) illustrates the categorization of 
the four delineated MEs in relation to an ideal ME. With 
regard to the mean productivity of each ME, ME4 (Nossa 
Senhora das Dores and Frei Paulo) is the most proximate 
the “ideal” environment, exhibiting a mean productivity 
of 9.5 t ha–1. Conversely, ME2, with mean yields of 8.5 
t ha–1, appears to be the most distant from the “ideal” 
environment depicted in Figure 14.

Genotype classification

The GGE Biplot is a graphical representation that depicts 
the ranking of genotypes in relation to an ideal genotype 
(Figure 15A) and illustrates the means of each genotype 
along with their stability (Figure 15B). Genotypes G17, 
G08, and G07 were identified as the hybrids that most 
closely approximated the ideal genotype, as indicated 
by their proximity to the center of concentric circles 
(Figure 15A). With regard to stability, G08, G09, and G14 
exhibited greater stability, whereas G16 displayed the 
highest level of instability among the evaluated hybrids 
(Figure 15B). A comparison of GGE with MTMPS 
revealed that hybrids G07, G08, G14, and G17 (Figure 
10A-D) were also selected as the most productive and 
stable among the different MEs.

Discussion

The climate variability in the northeastern region of 
Brazil is complex and diverse. This is evidenced by the 
grouping of distant cities from different states into the 
same ME (ME1 and ME2), while closer cities within the 

same state (Sergipe) formed two distinct MEs (ME3 and 
ME4) (Figure 1). 

The observed complexity in climatic patterns 
within the northeastern region of Brazil is consistent with 
similar findings of Yue et al. (2022), who documented 
comparable ME dynamics in the Huanghuaihai Plain of 
China. Furthermore, the high spatio-temporal variability 
and irregular rainfall patterns observed in northeastern 
Brazil (Brito et al., 2021) are highlighted, particularly in 
the context of major atmospheric phenomena such as 
El Niño and La Niña (Nóia Júnior and Sentelhas, 2019). 
These parallels underscore the significance of our study 
in understanding climatic variability and optimizing 
genotype selection and agricultural planning. Our 
research offers valuable insights that can enhance the 
resilience and productivity of agricultural systems in 
similar environments globally.

These findings prompt a more comprehensive 
exploration of the distinctive attributes associated with 
each ME identified in this study. The PCA biplot (Figure 
4A) offers insights into the characteristics of each ME 
in the study. ME1 is distinguished by elevated values of 
GDD, which signify the accumulated temperature for 
plant development. Additionally, ME1 exhibits a higher 

Figure 10 – The genotypic ranking and the chosen genotypes (G) for the multi-trait mean performance and stability index (MTMPS), 
considering a selection intensity of 25 % within A) macroenvironment (ME)1, B) ME2, C) ME3, and D) ME4. The highlighted red circles 
indicate the five selected genotypes for each respective macroenvironment.

Figure 11 – A Venn diagram illustrating the five selected genotypes 
(G) in each macroenvironment (ME).
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Figure 12 – Selection gains for average performance within each macroenvironment (ME) were calculated considering the top five selected 
genotypes. EH = ear height; PH = plant height; GY = grain yield; NE = number of ears; PD = plant density.

Figure 13 – Selection gains for stability within each macroenvironment (ME) were calculated based on the top five selected genotypes. EH 
= ear height; GY = grain yield; NE = number of ears; PD = plant density; PH = plant height.

and greater temperature fluctuations. This observation 
aligns with the findings of Yue et al. (2022), who reported 
similar characteristics for drier environments.

Similar findings were reported, indicating that the 
most productive ME exhibited the highest VPD levels. This 
led to the conclusion that VPD alone was not sufficient 
to diminish productivity (Yue et al., 2022). This is likely 
due to the influence of other environmental variables, 
including TMAX, TMED, and TMIN, as well as RH, WS, 
and PRECTOT. These variables can significantly influence 
the phenotypic expressions of the hybrids studied.

An understanding of the environmental dynamics 
across diverse locations and years, in conjunction with 
G × E, is of heightened significance (Gauch et al., 2008; 
Olivoto et al., 2019a; Yan et al., 2007). The identification 
of maize genotypes capable of effectively navigating 
water stress and other climatic fluctuations, particularly 
within specific MEs and aligned with growth stages, is of 
paramount importance for sustaining productivity over 
successive years (Carcedo et al., 2022; Rezende et al., 
2020; Xu, 2016; Yue et al., 2022).

ratio of radiation use efficiency (FRUE), indicating 
that plants in this ME utilize solar radiation (n) for 
photosynthesis and biomass production. Moreover, ME1 
is associated with elevated values of mean temperature 
of the dew point (TMDEW) and daylight hours (N), 
indicating favorable conditions for plant growth. 
Conversely, ME2 is characterized by elevated values of 
maximum temperature (TMAX), ASKLW, PRECTOT, 
and PETP. The increased precipitation levels and higher 
values of PETP suggest that ME2 is experiencing greater 
water availability. In contrast, ME3 exhibits higher values 
of wind speed (WS) and n, indicating stronger winds and 
longer sunlight duration, as well as a lower temperature 
range (TRANGE), with a TMAX of 28.1 °C and a minimum 
temperature (TMIN) of 22.5 °C. These conditions are 
optimal for maize development and may influence the 
growth and development of plants in ME3. Finally, ME4 
is distinguished by higher values of VPD and TRANGE, 
with a TMAX of 29.4 °C and a TMIN of 19.3 °C. This 
association suggests that drier environmental conditions 
are characterized by higher evapotranspiration rates 
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the primary traits for genotype enhancement are matric 
in nature, and involve multiple genes in phenotypic 
expressions (Borém et al., 2017; Ceballos et al., 2020; 
Jarquín et al., 2014; Sampaio Filho et al., 2023).

This information is of paramount importance for the 
classification of environments into distinct ME categories 
and the selection of genotypes within these categories, 
as opposed to the use of broadly adapted genotypes for 
all MEs (Abakemal et al., 2016; Gauch and Zobel, 1997; 
Sampaio Filho et al., 2023; Yue et al., 2022).

Nevertheless, genotypes have been developed and 
demonstrated to be productive in a range of MEs. The 
selection of hybrids G04 and G03 in three out of four 
MEs (ME1, ME3, and ME4) underscores their robust 
performance and stability across diverse environmental 
conditions. Furthermore, ME4 emerged as the most 
favorable environment, aligning closely with the optimal 
conditions for the studied hybrids.

The MTMPS, a novel form of multivariate selection, 
may be regarded as an adaptation of MTSI (Olivoto et 
al., 2019b; Yue et al., 2022). The MTMPS index identified 
five hybrids for each ME using a selection intensity of 
25 % (Figure 10A-D). The selected hybrids exhibited 
reduced MTMPS values, suggesting their proximity to the 
ideotype when considering all evaluated traits (Olivoto 
et al., 2019b; Sampaio Filho et al., 2023). The MTMPS 
methodology has demonstrated efficacy in assessing G × 
E in maize breeding, enhancing performance and stability 
across all evaluated traits. Nevertheless, despite its 
potential for improving genotype selection, the MTMPS 
methodology is not widely utilized.

In conclusion, envirotyping has been demonstrated to 
be an effective method for establishing robust correlations 

Figure 15 – Genotype and Genotype × Environment Biplot (GGE Biplot): mean × stability for grain yield (t ha–1) of 20 maize genotypes 
grown in four macroenvironments (MEs) of the Brazilian Northeast and their respective production stabilities. The analysis uses Single 
Value Projection (SVP) = 1, the singular value is entirely partitioned into the genotype eigenvectors. Env = environments and Gen = 
genotypes. PC = principal component; G = genotype.

Figure 14 – Genotype and Genotype × Environment Biplot (GGE 
Biplot) of environmental ranking, displaying the classification 
of macroenvironments (MEs) concerning an ideal ME. The 
analysis uses Single Value Projection (SVP) = 2, the singular 
value is entirely partitioned into the environment eigenvectors. 
PC = principal component.

These findings underscore the reliance of genotype 
phenotyping expressions on environmental cues (Guo 
et al., 2020; Krause et al., 2020; Rezende et al., 2020), 
thus emphasizing the significance of genotype selection 
within MEs (Sampaio Filho et al., 2023; Yue et al., 2022). 
Such tailored selection strategies have the potential to 
yield greater selection gains, particularly in cases where 
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between environments, thereby enhancing the accuracy of 
cultivar recommendations across different locations within 
the same ME trial. The multivariate approach, specifically 
the MTMPS index, has demonstrated effectiveness in 
selecting productive and stable genotypes for each ME. 
By integrating envirotyping techniques with multivariate 
selection strategies for average performance and stability, 
this study has provided valuable insights into genotype-
environment interaction within multi-environment trials. 
These advancements are poised to significantly enhance 
breeding programs and contribute to the development of 
more resilient and productive crop varieties tailored to 
specific environmental contexts.
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